Dispersion Engineering for Multifunctional Photonic Crystal Based Nanophotonic Devices at Infrared Wavelengths
نویسنده
چکیده
TIn this paper, we report the design, the fabrication and the near field optical microscopy of Negative Index Material (NIM) and GRadient INdex (GRIN) photonic crystal based flat lenses. They were fabricated on the basis of an InPbased photonic crystal technological platform including hole and pillar networks fabrication at nanometer scale. They show the possibility of sub-wavelength focusing by all dielectric periodic or quasi-periodic crystals. Particular attention is paid to the analysis of SNOM images using three-dimensional simulations. Finally, in order to demonstrate the versatility of our approach, a two-dimensional cloaking device mixing hole and pillar arrays is evaluated to pave the way for future integrated nanophotonic devices with complex functionalities. OCIS codes: 220.2740, 230.5298, 080.2710, 170.6960 First, an optimized PC-based flat lens optimized in resolution (~0.8λ) and transmission efficiency (~30%) is presented. It operates in the negative refraction regime (n = -1) [10-12] with a patterning scale (a/λ) of 0.3 (a denotes the crystal period). The double focusing of a quasi-point source was unambiguously experimentally assessed and validated by three dimensional (3D) simulations. Second, the focusing of a plane wave was studied by means of so-called GRIN (gradient index) lenses [13-19]. Square lattices of hole and pillar arrays were designed, operating for complementary optical field polarization, in the long wavelength regime (a/λ < 0.1). Index variation in the direction transverse to the direction of propagation is obtained by varying the hole or pillar diameters while the lattice period is kept constant. Here again, the focusing is clearly evidenced by means of SNOM measurements. Then, in a prospective manner, partial invisibility [20,21] was searched by means of two dimensional (2D) transformation optics concepts to go beyond initial proposals based on mixed passand stopband photonic crystals [22]. Here, the idea consists in decreasing the scattering by an object deposited on a reflector [23,24]. A preliminary feasibility study of such a device will be initiated. The plan of the paper is as follows: Section II is devoted to fundamental physical principles which allow us to exploit ultrarefraction phenomena using local and bulk dispersion engineering in patterned dielectrics. In section III, the InP-based technological Citation: Hofman M, Scherrer G, Kadic M, Mélique X, Śmigaj W, et al. (2013) Dispersion Engineering for Multifunctional Photonic Crystal Based Nanophotonic Devices at Infrared Wavelengths. J Nanomed Nanotechnol 4: 185. doi:10.4172/2157-7439.1000185
منابع مشابه
Spectrally Selective Infrared Absorption Enhancement in Photonic Crystal Cavities
Infrared photodetectors with spectrally selective response are highly desirable for applications such as hyper-spectral imaging and gas sensing. Owing to the ability of photonic density of states modification and dispersion engineering, photonic crystals appear to be one of the most promising platforms for infrared photodetectors with spectrally-selective absorption enhancement. We report here ...
متن کاملA Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers
In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...
متن کاملFiber - coupled nanophotonic devices for nonlinear optics and cavity QED
The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems ...
متن کاملSpectrally selective infrared absorption in defect-mode photonic-crystal-slab cavity
Significantly enhanced absorption at the defect mode can be obtained at surfacenormal direction in a dielectric single-defect photonic-crystal-slab, with an absorption enhancement factor greater than 4,000. Complete absorption suppression within the photonic bandgap region can also be observed in defect-free photonic crystal cavities. High spectral selectivity and tunability is feasible with de...
متن کاملWideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber
In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014